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Error Estimates for the Numerical Identification 
of a Variable Coefficient* 

By Richard S. Falk 

Abstract. Error estimates are derived for the approximate identification of an unknown 
transmissivity coefficient in a partial differential equation describing a model problem in 
groundwater flow. The approximation scheme considered determines the coefficient by least 
squares fitting of the observed pressure data. 

1. Introduction. In this paper we wish to present an error analysis of a common 
numerical scheme used in the identification of parameters in distributed systems. 
Specifically, we shall concern ourselves here with a model problem in groundwater 
flow. The problem is to identify a spatially varying transmissivity coefficient a(x) 
from observations of the piezometric head u(x) in a two-dimensional static aquifer 
S2, where a and u are related by the equations 

(1) -div(avu) f in s2, 

(2) aau = g on8Q an 

and f and g are given functions satisfying the compatibility condition fI f dx + 

faogds = 0. 
If a cannot be measured directly, but it is possible to obtain an approximate 

measurement z of u, then a common approach to the approximate determination of 
a (see for example [61) is to solve the problem 

(Ph) Find ah E Kh such that 

J(ah) = inf J(b), 
bEKh 

where J(b)-11 Uh(b)_Z 1- 

(3) Kh = {bEb Th: O < cO s b < cl} 
(with co, cl given a priori bounds on the transmissivity), and uh(b) E Sh is defined 
by 

(4) f bvUh(b )Vvh dx fgvh ds + ffh dx, 

for all vh c Sh, and 

(5) fuh(b)dx-fz dx. 
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In the above Th and Sh are finite-dimensional subspaces of L2(A2) and H'(Q), 
respectively. 

Our main concern in this paper will be to derive error estimates for such a 
procedure under conditions that guarantee the inverse problem of identifying a(x) is 
well-posed. To see that in general the inverse problem is not well-posed, observe 
from (1) that if vu vanishes on some subdomain of Q, one can have nonuniqueness 
of the transmissivity coefficient. 

For this model problem it is also possible to construct approximation schemes 
which solve directly for a using Eq. (1) viewed as a hyperbolic equation for a. An 
approximation scheme using Galerkin's method is proposed in Frind and Pinder [4], 
although no error analysis is given, and a finite difference scheme is proposed and 
analyzed in Richter [7]. Further references for various approaches to this problem 
can be found in the paper of Yoon and Yeh [9]. 

We also note that although the approximate problem (Ph) is based on viewing the 
underlying equation (1) as an elliptic equation for the pressure u(x), some of the 
analysis will be based on viewing (1) as a hyperbolic equation for the transmissivity 
a. In this regard, the work of Lesaint [5] has been useful. 

An outline of the paper is as follows. In Section 2 we define the notation to be 
used and state the conditions under which our main results will be obtained. Section 
3 contains the derivation of the error estimates for the approximation scheme 
defined in Section 1. Finally in Section 4 we give a brief description of a method for 
solving the approximate problem. 

2. Notation and Preliminaries. For Q a bounded domain in R2 and k a nonnegative 
integer we shall denote by Wk,P(2) the usual Sobolev spaces of functions defined on 
Q with norms 

k I/p 

11 Ul kp Q : 11 DJ*u 11 P <aJ 1sp < x0 
V*1=? 

and 

k 

11 U11 k, o,Q- =: 11 D ull Ixu 
9'1 =0 

We further denote by Hk(2) the space Wk,2( 2) and will use the notation II u 11 k,, to 
denote the norms in Hk. In most cases the intended domain will be clear from the 
context and so the subscript Q in the norm will be dropped. 

We shall also use the notation (*, -) to denote the L2 inner product in S2, and 

<, ) to denote L2 inner product on F= aQ. For future reference we note that 
using (1), (2) the true piezometric head u is related to the transmissivity a by the 
variational equation 

(6) (aVu, vV) (f, v) + (g, v) Vv E H'(Q). 

We shall normalize u to also satisfy 

(7) f(u-z) dx = O. 
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To define the finite-dimensional subspaces used in the approximation scheme, we 
let Ah, 0 < h < 1, be a triangulation of i? with triangles T of diameter less than or 
equal to h. If the boundary is curved, we shall use triangles at the boundary with one 
edge replaced by a segment of the boundary. We assume the family {Ah} is regular 
and quasi-uniform. For r 1 a fixed integer we then define 

Sh= {V E CO(): VITEPrVT& Ah}' 

where Pr is the space of polynomials of degree r or less in the variables xl and x2. 
For information about the properties of such spaces we refer the reader to [2] and to 
[81 for the case of a curved boundary. 

The error estimates for the approximation scheme (Ph) will be derived under the 
following two assumptions about the true piezometric head u. 

(A 1) There exists a constant unit vector 17 and a constant a > 0 
such that Vu v+> a > 0 Vx E Q, 

and 

(A2) u E Wr+3,oo( 2) and IF, { x E r au > ? E cr+2 (r > 1). 

We now make some remarks about and examine the implications of these 
assumptions. (Al) is a physical hypothesis stating that there is always some flow in 
the v7 direction. Along with a regularity assumption on u, it is sufficient to guarantee 
uniqueness of the inverse problem for the determination of a(x). 

LEMMA 1. Assume condition (Al) holds and that u E W2'0(Q). Then there is at most 
one coefficient a(x) E H'(Q) and satisfying (6). 

Proof. Assume b is another such coefficient. Then subtracting equations we get 

((a - b)Vu, VV) = 0 for all v E H'(2), 

which further impies that (a - b) au/an =o on F. Choosing v = e -2kx(b - a), 
where k > 11 Au 11 0,00/(2a), and integrating by parts, one can show (see the proof of 
Theorem 1 with p = 1) that 

((a- b)Vu, vV) - Ke-2kxl - 
8, [a-b]2) 

+ ([a-b]2e-2kx 
' 

kVu - 7* +lIAu) 

Applying condition (Al) and the fact that (a - b) au/an 0 o on F, it easily follows 
that ((a - b)Vu, vV) : T-lIa - b112 for some T > 0. Hence la - b 11 0 0 and so 
a = b. 

Hypothesis (A2) is a technical one giving sufficient conditions for the validity of 
the following result, which we use later in the derivation of the error estimates. 

LEMMA 2. Assume hypotheses (Al) and (A2) hold. Then given T > 0, there exists a 
function p E Wr+2,?(Q) satisfying p = 0 on F,, and p[kv u . 1+ A Au]- vp -Vu 

T T > 0, where k = II Au II o ./(2a) 

Proof. Let p be the solution of the Cauchy problem 

(CP) Vp Vu = -2T in Q, 
p 0 O on F. 
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Since au/an > 0 on P1, 1r is not characteristic and, by (A1), IVu I# 0. Hence, for 

F, and u sufficiently smooth, we get a unique smooth solution of this initial value 
problem. In fact by (A1) we can take as local coordinates u and v, where v is a 
coordinate along the lines u = constant. Writing Tl in the form u = G(v), an easy 
computation shows 

p(x, y) _P(u, v) 
= -2T 

ds. 
G(V) (UX + u2)(s, V) 

Using this formula we see that p ? 0 in R?. Differentiating the formula then shows 
that condition (A2) is sufficient to guarantee the desired smoothness of p. 

3. Error Estimates. In order to derive our main result we will need an estimate of 
how well one can expect to approximate the true piezometric head u by functions of 
the form uh(b) (defined by (4), (5)), for b E Kh. That estimate is derived in the 
following: 

LEMMA 3. Suppose that a E Hr l(S) and u E Hr?2(o) (r > 1) satisfy (6)-(7) and 
that 

(8) 0 < co < mina(x) s maxa(x) <cl. 
xEA2 xE1 

Then if Kh is defined by (3) and uh(b) is defined by (4), (5) with Th= Shr and 
Sh = Shr[ 1, we have for all h sufficiently small that 

inf 11 uh(S) - U11 0 s Chr+2, 
bC-Kh 

where C depends on co, cl, II ail r+1, and 11 u 11 r+2' but is independent of h. 

Proof. Let b denote the L2 projection of a into Sr. Then, by a result of [3], and 
standard approximation results, we have, for all 1 p s x, 

(9) aIa-bl1o,p sC inf lla -b lop s Chr+l lallr+l,p. 
bC Shr 

Hence, for all x E Q, 

a - ChrIlallr+? 1 < b s a + ChrIlallr+? 1 

and so 

mina(x) - ChrlIIaIlr+?i,, < b s maxa(x) + Chr?IIalIr+li,. 

Thus by the definition of co and cl, b E Kh for h sufficiently small. 
Now, since b F Kh, we have 

(10) inf h1 uh(b) - ulII s ll uh(b) - ulh1. 
bE Kh 

Using Eqs. (4) and (6), we have for all vh E Shr+ that 

(11) (bv[uh(b) - u], VVh) 

- (bvuh(b), Vvh) - ([b - a]vu, VVh) - (avu, vVh) 

- -([b - a]Vu, VVh). 

Letting u1 denote the interpolate of u in Shj+ I, we also get for all Vh Shr+ that 

(bV[Uh(b) - ui, VVh) =- ([b - a]Vu, vvh) - (bV[u u- u], Vvh). 
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Choosing Vh = uh(b) - u1, we obtain 

11H V[uh(b) -u] u1 0 <[c, 11V(u, - u)I 0 + 11 b-a ll 1oHv ll U0ll]J/co. 
Hence applying standard approximation results, 

(12) H1v[Uh(b) - u]Ho0 s C[V(u, - u)II0 + Hlb - a0] 

s Chr+1[IIuH1r+2 + Ilallr+1] 

To estimate 11 uh(b) - u 11 0 we define 4 to be the solution of 

-div(avo) uh(b) - u in Q, 

0 = O on T, 
an 

fkdx 0, 

and use duality. Then for all Ph C Shr+ I 

HI uh(b) - u112 = (aV[uh(b) - u], v7) 

= ([a - b]v[uh(b) - u], v7() + (bv[uh(b) - u], V[1 (-h ]) 

+ (bv[uh(b)- u], VOh ). 

Now, using (11) and the fact that (b - a, y) = 0 for all -y C Sr, we get for all 
Oh c Shr+ andy c Shrthat 

(bv[uh(b) - u], VIh) = ([b - a]Vu, VOh) 

= -([b- a]Vu, v[1h - ]) -([b - a], Vu V0-y). 

Hence, for all P h Sr+ I and y- Sr, we get 

(13) llUh(b) - uHl Ha - bllO ollv[Uh(b) - u]0 lPvllO 

+ || b 11 00 11lV [uh(b) -u] ll 011 V IIvG - I) o 

+llb - alloIll VullO'11 V(Oh - )ll0 

+llb - all0l1vu - yH- -0. 

Since 11 H 11 2 s C HI uh(b) - u HI 0, we get using (9), (12), and standard approximation 
results that 

(14) H1uh(b) - <uH s Chr+2, 

where C depends on co, c, H u H1 r+2 and 11 a ll r+ 1, but is independent of h. The lemma 
follows by combining (10) and (14). 

We now derive the main result of this paper. 

THEOREM 1. Suppose that assumptions (Al) and (A2) are satisfied, the hypotheses of 
Lemma 3 hold, and that 

(15) llz-ullo II . 

Then, for all h sufficiently small, we have 

Ia - ahIlO s C[hr + h-2e], 

where ah is any solution of problem (Ph) and C is a constant independent of h and e. 
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Proof. Letting b denote the L2 projection of a into Sh and wh = uh(ah), we easily 
obtain from Eqs. (4) and (6) that for all Vh h 

([b - ah]VU, Vvh) ([b - a]vu, vvh) + (avu, Vvh) 

(ahV[u - Wh], Vvh) - (ahVwh, Vvh) 

([b - a]vu, VVh) - (ahV[u - Wh] Vvh) 

Hence, for all v E H'(Q) and all Vh E Shr+, 

(16) -([b - ah]VU, Vv) = ([b - ah]VU, V[vh-hv]) 
- ([b - a]Vu, VVh) + (ahV[u - Wh], Vvh). 

Now let i be a constant unit vector satisfying (Al) and p a function satisfying the 
conclusions of Lemma 2. 

Choosing v =pe2kx [b-ah] in (16), we have 

Vv e2k- [b - ah] Vp + e VP T{V (b - ah) - 2kiv(b - ah) 

and so 

-([b - ah]VU, VV) - (e xv[b - ah], Vu Vp) 

+ (e kx[b - ah], 2kpVu v P 

- 2(e - Vu, uV[b - 
ah])- 

Now 

- (e xpVu, V[b - ah]) 

=-2 Ke-2kxPup [b-ah ]2) 

+ 2([b- ah]e, xe {pAu + vu Vp - 2kpv' Vu)), 

and thus 

- ([b - ah] VU, VV) -=- K -2k 
X 

aVP [b -ah]2 

-2 (e [b - ah], Vu Vp) 

([ ]2 -2k "))) 1/ + ([b - ah]exvp, kV7u i7 + -Au) 

Applying Lemma 2, it easily follows that 

(17) - ([b-ah]VuVV) '> TIlb-ahII0, whereT = T mine2kX . 
xe 

To bound the right side of (16) we set vh equal to the interpolate of v in Sr+ and 
estimate 11V(Vh - v)110. 

Letting T denote an arbitrary triangle of the triangulation Ah of 02, we have by 
standard approximation theory that 

(18) IIv(V - Vh) II(v- Vh)I0,T< S 11 V 11 r+2,T]- 
TEAh TEAh 
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Now, since v = pe 2k[b - ahl, p E Wr?2 ?, and [b - ahl IT E Pr(T), 

(19) || V 1l r+2,T S C(p)I Ib - 
ah 1 r,T 

Combining (18), (19), and the inverse property 

lb - ah IIr,T S Chr llb - ah IIO ,T 

we obtain 

(20) 1lV(v -vh)llO sChllb -ahlo. 

Again using the inverse property, we get 

(21) 11Vvll0 s lle 2k"Vpllo'IlIb- ahIlO 

+IIe 2k2 "2pkiII oj Ib-ah 11 + 11 e- vpo 11 V 0011 (b - ah)l0 

s C-lllb-ahlI0 

Combining (20) and (21), we also have 

(22) llVVhllo S llv(vh v)ll0 + llvvll0 S Ch'II b - ahIIO. 

Using (20), we get 

(23) ([b - ah]VU, V[Vh - v]) < jib - ahIlIOIIVuIIO,.11V(Vh - v)l0 

?Chllb - ahl11 

From (22) and standard approximation properties we have 

(24) -([b-a]vu, Vh) S llb-aIloIIVuIIoj1IlVvhIIo 

SCh-lllb - a l r+1lal+ S ChrlbalO ? CI'II - hlloh IIaIIr+1 ? hIIb - ahIIO. 

Applying (22) and the fact that 11 ah 11 o < S cl, we also obtain 

(25) (ahV[U 
- 

Wh], VVh) S IIahIIo,ooII V(U - 
Wh)10o11vvh 10O 

s ChIrIlb - ahII01IV(U 
- 

Wh)110- 

Letting u1 denote the interpolate of u in Sr+ 1, we get using the inverse properties of 
Sr+' that 

(26) IV(u - wh)II0 s Iv(u - UI)II + Iv(uI - Wh)II0 

s 11V (u - uI)110 + ChI 1u - Wh 11 o 

11V (u - uI) 110 + Ch1 11 - U 11 0 

+Ch-I'Iu - zl1 + Ch-'liz - WhIIO1 

Recalling that wh = uh(ah), we then have by the definition of ah, Lemma 3, and 
hypothesis (15) that 

(27) lIZ - Wh1t0 lIZ - uh(ah)iiO inf liz - Uh(b)O10 
b E Kh 

s inf Ilu-uh(b )IO + Iu-z I I e+ Ch< e. 
bE Kh 

Combining (25), (26), and (27), and applying standard approximation results, we get 

(28) (ahV[u -wh], Vvh) 

Ch-llb - ahilo{Chr+l + Ch-Ie} < C[hr + h-2]ilb -ahilO. 
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Combining (23), (24), and (28), the right side of (16) is bounded by 

(29) Chllb-ahII +C[hr?+ h]-2Ilb-ah- . 

It now easily follows from (16), (17), and (29) that, for h sufficiently small, 

lb - ahII ? CC[hr + h-2e], 

and so finally 

Ila - ahIIO I Ila -blo + lb - ahIIO ? C[hr + h-2%]. 

COROLLARY. If z = u1, the interpolate of u in S[rl', then for h sufficiently small 
I a - ah ll0 ?s Chr for some constant C independent of h. 

The reader should note that the error estimate obtained in Theorem 1 (with E = 0) 
is one power of h less than is possible by the best approximation of a by elements of 
the subspace Shr. Although we believe the result to be optimal for the two-dimen- 
sional problem considered, we now show how the result can be improved for the 
one-dimensional analogue of this problem. 

We thus consider the problem where Q = [0, 1]. Besides obtaining a better error 
estimate, the result in one dimension will be more general since we can now allow a 
wider choice of subspaces Th and Sh. 

For 0 < h < 1 we now let Ah be a quasi-uniform partition of [0, 1] into subinter- 
vals I of length less than or equal to h. For r > 0 and k > -1 integers we then define 

Tr,k {b Ck(E): b E Pr VI E /Ah} 

where Pr is the space of polynomials of degree r or less and C-l(Q) denotes no 
interelement continuity requirement. 

We now derive the following improved estimate. 

THEOREM 2. Suppose that a E Hr+ l(Q), u E Hr?2(Q) (r > 0) satisfy (6)-(7), 

(30) Du > y > 0 for some constant y 

(the analogue of (Al) where D = d/dx), and that hypothesis (8) of Lemma 3 is 
satisfied. Then if ah is a solution of problem (Ph) with Th = Thr,k and Sh = Th," where 
r > 0, k -1, s > r + 1 and 0 s l s k + 1, and llu-zH0 I , we have for h 
sufficiently small that 

la - ahlO ? C[hr+1 + h-le], 

where C is a constant independent of h and e. 

Proof. Letting b denote the L2 projection of a into Thr,k and Wh = uh(ah), we easily 
obtain from Eqs. (4) and (6) that for all Vh EE Th, 

([b - ah]Du, DVh) = ([b - a]Du, Dvh) - (ahD[u - wh], Dvh). 

Observing that the choice Vh = f x(b - ah)(s) ds E T", we get 

(Du, [b-ah]2) = ([b-a]Du, b-ah) - (ahD[u - wh], b - ah), 

and so applying (30) it follows that 

11 b - ah 110 < 11 b-a 110 11 Du 11 0,OO + 11 ah 1H OOH 11 D [ u - wh ]1O}/y. 

Since ah E Kh, we get for some constant C independent of h that 

(31) la - ahHO H< a - b 0 + lb - ahHlo < C[lla - b0 + ID[u - Wh] O. 
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Now letting u, denote the interpolate of u in Thl,' we get using the inverse properties 
of Th," that 

(32) IID[u - wh]lIo < IID[u - uI]llo + IID[u -Wh]llO 

IlD[u - uI]II0 + Ch Illul - whllo 

s IID[u - u1]110 + Ch-' u, - u110 + Ch-Illu - z110 + Ch-Il z - Wh llo. 

We next observe that the one-dimensional analogue of Lemma 3 is valid for r > 0 
and Th and Sh chosen as in the hypotheses of Theorem 2. Hence, recalling that 
Wh = Uh(ah), we have by the definition of ah and Lemma 3 that 

(33) liz - Whilo I lIZ - uh(ah)llO - inf liz - Uh(b)llo 
bEKh 

' inf llu - uh(b)llo ? lIu -Zlo l< Ch,+2 + e. 
bE Kh 

Combining (31), (32), and (33), and applying standard approximation properties, we 
get 

Ila - ahl1O <C[hr+l + h-'c]. 

4. Solultion of the Approximate Problem. In order to determine the approximate 
transmissivity coefficient ah, we must solve problem (Ph). Writing ah 1 a,(D,, 
where {' I are a basis for Shr, problem (Ph) reduces to a nonlinear programming 
problem to obtain the coefficients {a }a, . In the case r = 1, Shr consists of piecewise 
linear functions, so that the constraint set Kh reduces to the set of linear inequality 
constraints c0 < a < cl, i 1,... ,m. 

One possibility for the resolution of this nonlinear programming problem is to use 
some type of gradient projection method. The steepest descent algorithm, for 
example, has been successfully used in work of Chavent [1], where the gradient of J 
is computed by introducing an adjoint variable. 

For each b E Kh we define ph(b) E Shr+' as the solution of 

(34) ( bvPh(b ), V Vh) = 2(Uh(b) Z, Vh) 

for allVh E Sh+1 and f p"(b) dx = 0. 

It is then easy to check that if b = 1= lm 13l and b = Em I 
y, 

Di E Shr, then 
m, 

J ( b )- b = Vg7 ( b7Uh( b )7 Ph(b ) 

Hence the evaluation of J'(b) - b simply requires the solution of the two linear 
systems of equations corresponding to Eqs. (4) and (34). References to other 
approaches can be found in [9]. 
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